Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples
نویسندگان
چکیده
Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 (ITS2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities.
منابع مشابه
Evaluation of a new set of Real-Time PCR for Brucella detection within human and animal samples
A quantitative TaqMn Real-Time PCR assay was developed and its diagnostic value on human serum and livestock samples were evaluated. Brucella species could be distributed through communities as a biological agent. Rapid detection of biological threat agents is critical for timely therapeutic administration. Quantitative real-time PCR provides a rapid, sensitive and specific tool for molecular i...
متن کاملDevelopment of SYBR Green I Based Real-Time RT-PCR Assay for Specific Detection of Watermelon silver mottle Virus
Background: Watermelon silver mottle virus (WSMoV), which belongs to the genus Tospovirus, causes significant loss in Cucurbitaceae plants. Objectives: Development of a highly sensitive and reliable detection method for WSMoV. Materials and Methods: Recombinant plasmids for targeting the sequence of nucleocapsid protein gene of WSMoV were constructed. SYBR Green I real-time PCR was established...
متن کاملQuantification and Optimization of Candida albicans DNA in Blood Samples Using Real- Time PCR
Background: Candida albicans (C. albicans) is a major cause of candidaemia in people with impaired immunity. Blood culture is a “gold standard” for candidaemia detection but is time-consuming and relatively insensitive. We established a real-time PCR assay for C. albicans detection in blood by LightCycler PCR and melting curve analysis. Methods: Five milliliter blood samples from...
متن کاملDevelopment and Evaluation of Real-Time RT-PCR Test for Quantitative and Qualitative Recognition of Current H9N2 Subtype Avian Influenza Viruses in Iran
Avian influenza H9N2 subtype viruses have had a great impact on Iranian industrial poultry production economy since introduction in the country. To approach Rapid and precise identification of this viruses as control measures in poultry industry, a real time probe base assay was developed to directly detect a specific influenza virus of H9N2 subtype -instead of general detection of Influenza A ...
متن کاملA Real-Time RT-PCR Assay for Genotyping of Rotavirus Strains
Background: Human rotavirus (HRV) is the causative agent of severe gastroenteritis in children and responsible for two million hospitalizations and more than a half-million deaths annually. Sequence characteristics of the gene segments encoding the VP7 and VP4 proteins are used for the genotype classification of rotavirus. A wide variety of molecular methods are available, mainly based on rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 56 شماره
صفحات -
تاریخ انتشار 2018